
Proceedings from UITQ 2005

 63

Software is Orgware – A Semiotic Perspective on
Computer Artifacts

Peter Brödner

Institute for Work and Technology
Munscheidstr. 14, D - 45886 Gelsenkirchen

Peter.Broedner@t-online.de

ABSTRACT

Contrary to common belief, IT systems often disappoint the
expectations to increase productivity and flexibility of work
and value creation processes. Moreover, most IT design and
implementation projects still fail or burst time and cost
budgets to a high extent. After presenting significant
empirical evidence for these phenomena, the paper reflects
on the reasons for their persistence by developing a
semiotic perspective on the processes of dealing with
computer artifacts in organisations. This semiotic view
allows to understand these processes of designing,
implementing and using IT systems as efforts of structuring
social practices in organisations. Finally, a number of
guidelines for an improved practice of designing and
appropriating IT systems for effective use in organisations
are derived from these theoretical reflections.

Author Keywords

Software crisis, IT productivity paradox, semiotic
perspective on computer artifacts, computers as means of
organising.

INTRODUCTION

Information Technology (IT) has often been characterised
as “enabling technology” connected with far reaching
promises. IT should allow for new forms of work
organisation, open up new ways of organising value
creation processes or even provide opportunities to create
new businesses. Moreover, it should, according to common
belief, lay the ground as a basic general-purpose technology
for doing work more effectively and efficiently in a flexible
environment.

Some of these promises have doubtlessly come true.
However, most real IT implementations have turned out to
be a barrier to rather than an enabler for organising flexible

and more productive work and value creation processes. In
essence, there are two strongly investigated empirical
indicators for the unfulfilled promises and disappointed
expectations: the so-called IT productivity paradox and the
persistence of the software crisis.

Although there are growing bodies of empirical evidence
for both phenomena, they are widely neglected in practice.
In contrast, this paper wants to take the empirical evidence
seriously and intends to reflect on the reasons for it. Why is
it that only so few organisations succeed to substantially
improve their economic performance by the use of IT
systems? What are the reasons for the fact that, after forty
years of strong software engineering efforts, still so many
IT development and implementation projects fail again and
again?

To this end, the paper starts with some significant empirical
findings for both phenomena. It then develops a theoretical
perspective on the nature of computer artifacts and their use
for two reasons: First it can explain the empirical findings
and second it serves as basis of cognition from which a
number of guidelines can be derived for an improved
practice of designing, implementing and using IT systems.

PERMANENT SOFTWARE CRISIS
AND PRODUCTIVITY PARADOX: EMPIRICAL EVIDENCE

The Persistence of the Software Crisis

On a famous NATO Conference in 1968, the software crisis
has been analysed and declared for the first time. Twenty-
three years later, in 1991, Mitchell Kapor, the founder of
Lotus Development Corp., stated in his Software Design
Manifesto: “The lack of usability of software and poor
design of programs is the secret shame of the industry” [11:
3]. And in 2004, another thirteen years later, a high level
expert group in the UK put forward still again basically the
same complaints about extraordinary high failure rates in
the software industry culminating in the paradox: “We
know why projects fail, we know how to prevent their
failure – so why do they still fail?” [27: 10].

As a matter of fact, IT application projects do completely
fail or at least burst their cost and time budgets to an extent
and frequency which is markedly higher than in classical
engineering disciplines. This is impressively confirmed by
empirical findings from the Standish Group whose regular
investigations collect data from large numbers of software

Proceedings from UITQ 2005

 64

application projects. In a recent survey from 2001 [32],
based on data from over 30.000 projects, they found that
only slightly more than one quarter of the projects
succeeded, i.e. that they were completed on time and on
budget, with all features and functions originally specified.
All other projects either failed completely (cancelled before
completion) or were challenged, i.e. completed and
operational, but over-budget, over time estimate and with
less functions than initially specified. And this did not
substantially change over time (Fig. 1).

Figure 1: Success and failure of IT application projects
(Standish Group)

From another empirical study on software failures we
further know that the probability for failure highly depends
on the size and complexity of the IT application projects.
This probability grows exponentially with size up to a 50%
cancellation probability for large projects with over 10.000
software functions [9].

Those complete software failures that have become known
to the public, of course, form a peak of an iceberg only,
since most failures remain hidden. However, the few that
have been analysed all point, despite big differences
between them, to the same reasons for failure again and
again (see e.g. [24, 28]): insufficient project management
and project controlling, underestimated complexity, lack of
communication between designers and users, frequent
changes of requirements during design and implementation,
delayed decisions for progress, and incomplete
documentation. Only recently, this has again been
confirmed by the Royal Academy of Engineers: Alarming
numbers of IT application projects “fail to deliver key
benefits on time and to target cost and specification. ... This
can be ascribed to general absence of collective
professionalism in the IT industry, as well as inadequacies
in the education and training of customer and supplier staff
at all levels” [27: 4].

The IT Productivity Paradox

In accordance with these observations, we find the widely
investigated so-called IT productivity paradox according to
which IT often fails to increase productivity (for an

overview cf. [2, 12]). Despite huge and ever growing
investments in IT over decades, no noticeable additional
productivity effects have been observed on the macro level
of the economy. In the USA e.g., real annual IT investments
have increased by more than ten times from a level of 20
Billion USD in 1975 to a level of 220 billion USD in 1990.
In the same period of time, productivity in manufacturing
has increased by the same small average annual growth
rates as before while productivity in the non-manufacturing
sectors has even stagnated [3].

This has not changed so much since, although productivity
in the USA – where investments in IT regularly surpass
those in manufacturing technology since 1991 – has
significantly increased in the second half of the 1990ies
from an average annual growth rate of 1% in the years
1987-1994 up to an average annual growth rate of almost
2,5% in the period between 1995-2000. Many observers
have ascribed this productivity growth to IT. However, as
the most recent productivity study analyses, this
extraordinary productivity leap was solely caused by
specific and unique developments in just six sectors:
wholesale and retail trades, security and commodity
brokers, electronic and electric equipment, industrial
machinery and equipment, and telecom services.
Surprisingly, these unique developments mainly deal with
organisational redesign of the value chains rather than
higher efforts in IT system implementations [15].

Since productivity investigations on the macro level are
admittedly problematic due to a number of measuring
problems and to possible compensating effects of a
multitude of simultaneous changes, the focus of interest in
studying the paradox has switched to the micro level of firm
performance. Firm level investigations have indeed
produced a number of remarkable results. Besides a great
number of case studies, econometric analysis of data from
ca. 400 big US companies [4] points out that

IT systems may improve the economic performance of
companies, if and only if their implementation goes hand
in hand with decentralisation, object-oriented
reorganisation of work and investment in human capital,

“intangible assets”, e.g. collective action competence,
strongly influence the benefit of IT systems,

companies decentralising their organisational structures
achieve higher productivity in using IT systems than
those who invest in IT only,

the expenses for organisational renewal and training are a
multiple of the expenses for hard- and software, e.g. four
times higher in case of implementing ERP systems.

Our own research on the implementation and use of ERP
systems in German manufacturing enterprises produced
comparable findings. Seven out of ten companies follow a
purely technology-centered strategy and a top-down system
implementation procedure with highly detrimental
consequences for their economic performance. Thus, IT

Proceedings from UITQ 2005

 65

implementation projects regularly burst time and cost
budgets to a considerable extent, while relevant
performance indicators such as productivity, lead-time and
in-process inventories are hardly improved, despite the
extremely high expenses. The implementation process
mainly concentrates on requirements engineering and
design issues without end user participation, and efforts for
appropriation and training are low. As a consequence, many
functions of the system are not or poorly used, necessary
knowledge about the integration in underlying business
processes, their working principles and conditions is
lacking, and large amounts of deficient or redundant data
are being produced in use.

A small minority of firms only follows a more sophisticated
and economically much more advantageous strategy
starting with organisational redesign of their business
processes and object oriented reorganisation of work with a
clear customer focus. With these new organisational
structures in mind, they simultaneously implement the
functionally adapted IT system as a supporting tool and
medium for cooperation. Accordingly, end users are
strongly involved in these processes of organisational
design and system implementation from the beginning and
collective learning processes for appropriating and enacting
the new ways of working are systematically organised [2,
13,14].

Similar findings have also been reported from case studies
by other researchers [5, 6]. They obviously point to what is
behind the paradox: How organisations understand and deal
with computer artifacts either as means to automate existing
work or as enabling and supportive media for creating and
enacting an improved organisational practice decides about
the economic benefits that can be gained. Making effective
and beneficial use of computer artifacts is obviously more
than implementing a functionally appropriate system.

THEORETICAL REFLECTIONS:
COMPUTERS AS SEMIOTIC MACHINES

Semiotic Analysis of IT Systems: A Necessity

The misery indicated by these empirical data is, among
other things, deeply rooted in conceptual deficiencies. So
far mainstream computing science has – to some degree
with the exception of the Scandinavian school – treated
computer artifacts in much the same way as traditional
engineering disciplines have treated their artifacts: By
analysing relevant processes, functional specifications
could be derived which the envisaged machine then had, as
the result of a design process, to comply with. However,
computers are symbolic machines manipulating data that
represent information; their working principles obviously
are fundamentally different from devices transforming
energy or matter. Unfortunately, computing science has
failed so far to develop an appropriate conceptual
understanding of information or sign processes in which
computers are embedded. Instead, the discipline has,
besides its physical and mathematical foundations, strongly
elaborated its requirements engineering and design

methodology, but more of the same remedy only produces
more of the same misery.

Sign processes, however, are a ubiquitous phenomenon:
“Through almost all our life we are treating things as signs”
[20]. The creation and use of signs as well as the treatment
of information and meaning clearly are results of social
interaction and, hence, their analysis falls into the domain
of sociology. Unfortunately, the realm of things, how
people conceive, sensibly act and interact with the objects
they deal with in everyday life, reversely is being almost
neglected in modern sociology. As a result, the
comprehension of how people make sense of their artifacts
in use, in particular computer artifacts, is poorly developed
in sociology. As some kind of symmetric ignorance, both
conceptual deficits, the lack of understanding sign
processes and information in computing science as well as
the missing comprehension of human interaction with
technical artifacts in sociology, can at least partially be
made responsible for the misery of inappropriate design and
unproductive use of computer artifacts. Consequently,
conceptual considerations must start to deal with these
deficits. Those presented here are based on the pragmatic
tradition of thinking, namely on the concept of sign by C.S.
Peirce and the comprehension of things by G.H. Mead.

Signs are, according to Peirce, objects or processes that, in
the view of an interpreter, stand for other objects or
processes: A sign is “standing for something to someone in
some respect”. Signs are our windows to reality, without
them we could not even perceive it or sensibly act within it.
In this perspective, a sign is a triadic relation (I–>(R–>O))
between three entities: (1) the representamen R as a
material substrate of the sign (the object being interpreted
as sign), (2) the designated object O and (3) the interpretant
I as the meaning being assigned to the pair (R,O) through
interpretation [25]. This sign concept is recursive: The
interpretation is itself a sign that can be interpreted again.

In this perspective, computers can be identified as semiotic
machines forming an own class of machines that can be
well distinguished from the class of machines transforming
energy or matter [1]. In the first instance, both types of
machines have in common their close relationship with
language, since they incorporate intentionally designed
functions on the basis of concept formation and explicit
knowledge. Humans have to interpret these functions within
their action context in order to make sensible use of them
(the functional “language” of the artifacts). The effects
produced by these well-defined functions are then solely
determined by the inputs. In order to make sensible inputs,
intended use actions must be expressed in the functional
language of the artifacts. This holds for all technical
artifacts, from the hand-axe to the computer.

The fundamental differences between both classes of
machines, however, lie in their domains of operation, their
working principles and their purposes. The operational
domain of energy or matter transforming machines as well

Proceedings from UITQ 2005

 66

as of chemical or biological artificial processes lies in
nature as they purposefully intervene in natural processes
transforming energy or matter, while the operational
domain of semiotic machines is completely embedded in
the social space of human interaction as they aim at
converting signals or data within related sign processes.
The processing of semiotic machines does not leave the
social space of sign processes and meaningful interaction at
all. Accordingly, the working principles of energy or matter
transforming machines are completely based on natural
effects as perceived by knowledge and their purpose is to
make use of natural forces. The working principles of
semiotic machines, by contrast, are based on acting
instructions derived from explicit modeling of sign or
interaction processes and their purpose is to organise and
coordinate collective acting.

According to these distinctions, the interpretatory flexibility
in dealing with energy or matter transforming machines is
bound to and constrained by natural conditions, while in
case of semiotic machines it is based on habits and
conventions that themselves are affected by the models and
instructions implemented in the machines. Consequently,
their design and use face all problems of “double
hermeneutics” present in sign processes of social systems
[10]. In particular, the practice of dealing with semiotic
machines in organisations8 needs to be based on the
development of a sufficiently shared information space and
frame of interpretation [22].

Signals and Signs: From Physics to Semantics

Signs being used for computer processing can be specified
as “algorithmic signs” [17, 18]: As precise analysis reveals,
the use of computers in organisations is based on two
coupled sign processes interlinked by the same
representamen. While interacting with the computer,
humans use signs as input that are meaningful to them in
their action context. Inside the IT system, these signs, being
readable and meaningfully interpretable in the outside
context, are reduced to pure electronic signals as their
material substrate. The signals don’t “know” any more for
what they stand. Rather, they are being processed through a
program according to the completely determined
instructions of the underlying algorithm. In Peircean
notation the algorithmic instructions in this sign process
reduced to syntactical operations on signals take the role of
an interpretant, however a “causal interpretant” that
formally falls in one with the designated object (Fig. 2).

8 The class of semiotic machines can be further divided into the
subclasses of organisational systems and embedded systems. The
latter serve as control devices for natural processes or machines in
which they are embedded; they are not considered in this paper.

Internet

R

IintentionalIcausal

R

+ (x,y)

Ocausal

O

Figure 2: “Algorithmic sign” [18]: Unity of internal signal
and external sign

The completely determined result of these syntactical
operations on signals can, as its representamen appears on
the interface, be interpreted again as sign within the social
space of the action context. Consequently, computer-
mediated social interaction is internally characterised by
causal determination (“causal interpretant”) of signal
processing and externally by sense making interpretation
(“intentional interpretant”) of the signs associated with the
signals. Inside the semiotic machine we find the effects of
pure semiconductor physics and formal logic, while the
events of social interaction outside are determined by
semantics, the assignment of meaning in human action.
Consequently, the social space of sign processes in
interaction has not been deserted at any time. Rather,
certain aspects of social interaction are being modeled
within the computer system as a sequence of program
instructions or “auto-operational form” [7]. Hence, the
semiotic machine can also serve as a medium of organising
sign processes.

This perspective discloses the semiotic nature of software:
It exists as a finite description in form of a program text,
that in turn determines, as operational code, a set of
sequences of signal states of the hardware. These signal
processes can, as they are embedded in human action
contexts, be purposefully designed and meaningfully
interpreted. Accordingly, software is double-faced in
nature: It is (however awkwardly) readable text on one
hand, and executable operational code, i.e. a machine, on
the other. This exactly is a remarkable difference to
descriptions of traditional machines (drawings and parts
lists) that cannot directly execute themselves as machines.
As a consequence of the semiotic nature of software, its
usability, irrespective of its correctness, cannot be evaluated
but in the users’ action context.

According to Mead, even exploratory and instrumental
acting in dealing with things is of social nature: Things do
exist only so far as they also exist for others. Through our
intentional relationship to the world around us as well as
enabled by the action competence developed through

Proceedings from UITQ 2005

 67

socialisation and previous acting, we are able to assign
meaning to things or events we encounter. By exploratory
acting with them, we conceive their functions and
comprehend how we can use them intentionally and
purposefully. By remembering the action schemes and their
recurring characteristics, we form classes or concepts of
objects or events in the outside world. By acting and
interacting with others in a shared world, we “create” the
things and ourselves, seeing them as taken for granted [16].

Mental reflections on our acting and its conditions are
caused only, if hindrances or surprises occur in the flow of
acting. Such action problems lead to a situation in which
the things taken for granted are losing their “objectivity”,
since objectivity is not naturally given, but ascribed through
shared understanding. Obstacles in acting trigger a
reflection and search process in order to re-establish the
“vanished object” and to regain the capacity to act (cf. the
notions of “break-down” and “reflection-in-action” with
Schon [29]). However, the experienced disorientation in
such acting crises not only relates to the object, but also
concerns the acting person itself. In the moment of
uncertainty not only the world outside, but also the own
power of judgment is being questioned. The acting person
is unable to “distinguish between subject and predicate”: “I
want to emphasise that, as long as we don’t have a
predicate, we also don’t have a subject” [16]. Nevertheless,
through such processes of reflecting we can regain the
capacity of fluid acting. This capacity includes the ability to
anticipate the functions and properties of things learned
from previous actions and to organise own actions
according to the anticipated “thing behaviour” (cf. the
notion of “situated action” with Suchman [30]).

These considerations apparently are also closely related to a
similar approach based on the cultural-historic school of
thinking, namely on activity theory, as proposed by Taxén
in analysing computer-aided collective design processes of
complex technical artifacts (Taxén’s paper in this volume;
cf. [19, 31]).

Software is Orgware

By virtue of the Peircean concept of sign and the Meadan
comprehension of dealing with things one gets seamless
access to modern theories of social systems that mediate
between the views of subjective acting and objective acting
structures and that can, in particular, appropriately explain
both inertia and dynamics of collective acting in
organisations. In this theoretical perspective, organisations
emerge and reproduce themselves as social systems through
the continued sense making, mutually related and
coordinated acting of their members which itself is based
on grown routines and assumed expectations.

In the course of their continuous action flow, actors may
generate explicit knowledge through reflection and concept
formation about certain aspects of their experiences in
acting and in dealing with things as described. This
knowledge can be expressed and objectified again in the

form of linguistic signs, of organisational schemes or of
technical artifacts. In particular, technical systems like
computer artifacts can thus be designed as a product of
reflection on human activities, as objectified explicit
knowledge by modeling certain courses of practical action.
This model formation, in principle, undergoes the following
three steps of abstraction and formalisation:

Semiotisation: describing courses of action by signs as a
prerequisite for communication (result: application
model);

Formalisation: abstracting from interpretations bound to
situation and context by using standard signs and
operations (result: formal model, specification);

Algorithmisation: describing courses of action as formally
computable procedures by means of the standard signs
and operations (result: computing model).

Knowing that

Knowing that

ProcessForm

Practice

(Stage n+1)

Practice

(Stage n)

Tools

Machines

Formal
symbol systems

Knowing how

Knowing how

Artifact

Form and function

Using:

Acquisition of know-how

Appropriation

Designing:

Formalisation

Objektification

Figure 3: Genesis and use of technical artifacts:
Dialectics of form and process

In this way, computer artifacts emerge as objectified
propositional knowledge about purposeful human acting.
They are, as such, used again as means for further acting.
As “congealed knowledge” inscribed in their functions and
properties, they embody aspects of human practice, and as
means of work to practical ends they set specific action
requirements for effective use for which they must be
appropriated again. Appropriation for skillful and effective
use thus constitutes a new practice, new ways of doing
things ([2]; cf. Fig. 3).

Since they are derived from abstract, decontextualised
knowledge, technical artifacts always contain empty “slots”
that have to be filled in use through “recontextualisation”,
i.e. by interpretation and application suited to the situation.
As a consequence, their use value is constituted in the
application that is, due to the scope of interpretation within
the limits of the action requirements, open for diverse use.

Proceedings from UITQ 2005

 68

By routinely enacting the artifacts' forms and functions in
use, they structure human action, and in this way they
become involved as rules and resources in the constitution
of a particular recurrent social practice. Through recurrent
interaction with the artifact at hand, certain of the artifact's
properties become implicated in an ongoing process of
structuration in which rules and routines of using it emerge.
The resulting recurrent social practice produces and
reproduces a particular structure of technology use [21].
Consequently, the design and use of technical artifacts have
to be regarded as integral part of social systems’ dynamics
and, hence, the development of organisational practices.

According to this dialectics of expressive form (objectified
knowledge) and process (appropriation for use), technical
acting, the interaction with computer artifacts to accomplish
a given task, can be understood as a process of “social
construction of reality” [8]. Since the meaning of an
artifacts’ functions is created through interpretation in the
process of acting with them, they can also be interpreted by
others acting in the same action context. Successful and
mutually confirmed acting thus leads to a shared
understanding among the co-workers. Like practicing a
language or organisational acting, computer artifacts, thus,
are socially embedded in sign processes. In all these
activities conceptual knowledge is externalised or
objectified as forms – be they technical artifacts, language
terms or organisational schemes – together with emerging
rules how to interpret and how to sensibly act with them.

The externalised forms, in turn, can be used as resources for
further acting; they even enable or allow for new ways of
acting, if interpreted differently. As far as the rules of acting
with them are being appropriated and internalised, they
establish, together with the objectified forms they refer to, a
new practice. It is these mutually shared (but mostly
unconscious) rules (the formative context) that enable the
actors to appropriately interpret situations or facts as well as
data, instruments or instructions, in short: to fluently act in
the organisational environment.

The expressive forms as resources together with the rules to
deal with them, i.e. the attitudes, values, ways of thinking
and acting, and schemes of interpretation, constitute a social
structure that enables and, at the same time, constrain
collective acting (“duality of social structure”). What the
actors in an organisation can imagine and which
opportunities to act they see in a given situation thus
depends on the expressive forms they created as well as on
the interpretative rules they developed to deal with them.
The actors thus are socially constructing their reality,
however not of their own free will, but as prisoners of the
conditions they have developed to enable and regulate their
collective acting. By making sense of resources at hand
through interpretation (signification), by sanctionising
actions according to norms (legitimation), by influencing
other actors through administrative resources or by
prescribing the use of technical artifacts (domination), each
time in these social practices they create rules that constrain

the scope for future action and negotiation. The better the
expressive forms are adjusted to the action context and the
more appropriately they are interpreted, the more effective
the social practice of collective acting can develop (2, 10,
21, 23]; see Fig. 4).

Concept

formation

Rules of

signification

Rules of domination

Power relations

Rules of

legitimation

Cognition Language Technology Organisation Norm system

Rules

(Formative

context)

Acting

(Practice)

Resources

(Expressive

forms)

Propositions Expressions Tech. artifacts Organ. forms Norms

Comprehen-

ding

Communica-

tive acting

Technical

acting

Administrative

acting

Sanctionising

acting

Figure 4: Structuration: Mutual constitution of acting
 and social structure

A paramount consequence of the semiotic nature of
computer artifacts and their embeddedness in sign
processes of social interaction is the indispensable fact of
“double hermeneutics” [10]. In contrast to natural sciences,
where (with the exception of quantum mechanics) cognition
and the object of cognition are independent of each other, in
social sciences observations do change their own object of
observation. Hence, the object of observation, the social
system, is reflexive in the sense that the explicit knowledge
gained about the system – as well as the technical artifacts
derived from that knowledge – becomes part of the
system’s resources and rules being changed by this. Social
scientists, like system designers, have to interpret features
of a social system as object of observation, in which they
themselves take part as observers. Their thinking belongs to
the same system they think about.

Formalisation and algorithmisation as central computing
science activities of system analysis, modeling and design
exactly are such events of observation that change the
object of observation. Sign processes observed and modeled
in this way, therefore, are being changed by exactly these
activities: The object of modeling undergoes change by the
process of modeling itself – a fact that has been almost
neglected so far in software engineering with fatal
consequences.

Moreover, the development of technical artifacts (and of
software in particular) so far has been predominantly
concentrated on processes of design according to functional
requirements and almost neglected the reverse process of
appropriation and enactment for effective use. However, the
skill to make sense of the artifacts, to find adequate
interpretations for accomplishing the working tasks is at
least of equal importance and requires creative acting as
well [26]. And the collective learning efforts necessary for
the effective appropriation and enactment are much more
expensive than design.

Proceedings from UITQ 2005

 69

These are, according to the theoretical perspective
presented here, the main reasons for failure in IT
application projects. The following section focuses on
practical consequences that can be derived from this.

CONCLUSIONS FOR IMPROVING PROJECT
PRACTICES

A number of conclusions can be drawn from the semiotic
perspective on computer artifacts with respect to self-
comprehension of computing science as a discipline on one
hand and with respect to effective improvements in the
social practices of implementing and using IT systems in
organisations on the other.

First, the semiotic perspective opens the mind for a new
comprehension of computing science as a discipline of
technical semiotics which allows to conceive IT systems as
signal processing artifacts embedded in the sign processes
of social interaction. As such they serve, provided that they
are appropriately designed, adopted and enacted, as media
for organising work or value creation and knowledge
transformation processes. On the basis of the triadic sign
concept by Peirce, it can also bridge the gap to modern
sociological theories of organisations in order to gain a
holistic view and integrated procedures on system design
and organisational development.

Second, the semiotic perspective, thus, also delivers the key
for understanding the reasons behind the permanent
software crisis and the IT productivity paradox. As digital
devices and media for organising, IT systems are not just
models or representations of work processes but rather
serve as supportive technical artifacts that, in the course of
organisational development, must be co-designed,
appropriated and enacted for effective use together with
other organisational resources in the social practices of an
organisation. Due to the self-referential nature of these
activities, the social practices are themselves changed by
this. Consequently, the effects produced are not solely
dependent on the implemented system functionality, but are
a result of how they have been socially embedded and
enacted for practical use. System quality can, therefore,
only be evaluated in the context of practical use.

Third, as, a consequence of this, it is indispensable to
involve end users in design and implementation of both the
technical and the organisational features of the new work
system from the beginning. As designers normally have
only little understanding of the real work tasks and
procedures and users have only little knowledge about the
options IT has to offer for organisational redesign, both
main actors in the design and implementation process must
cooperate. In order to overcome their symmetrical
ignorance, they are compelled to develop a shared
understanding of the underlying work processes and frame
conditions. A number of practically proven methods exist to
support user participation including future workshops,
design scenarios or social simulation and rapid prototyping.

Fourth, as the design of IT systems is a reflexive endeavour

in the sense that the systems’ appropriation and use change
the work processes they are designed for, frequent changes
of functional requirements during system design and
implementation are inevitable. Software engineering
methodology, therefore, must cope with this inescapable
fact and organise design and implementation processes in a
reflexive or evolutionary way with iteratively revised and
improved versions of the system or its modules. This
requires sound methods for software engineering and
project management that combine aspects of modular
design, formative evaluation and collective learning with
constrained range in order to confine the risks. Moreover,
project management must conceive and organise the joined
evolutionary design, implementation and appropriation
efforts as integral part of organisational development.

Fifth, all actors involved must realise the fact that
implementation and use of IT systems have strong impact
on the balance of organisational flexibility and rigidity. All
human acting must be sufficiently supported by routines in
order to be fluent and efficient. Formal organisational
procedures and routines, therefore, help to organise
efficient collective acting. It actually is the purpose of
organisations to reduce contingency and to confine the
space of communication by rules, routines and formal
procedures. And as IT systems, by definition, operate on the
basis of completely determined procedures in form of
algorithms, they appear as a most appropriate organisational
medium. However, as they in turn impose rigid action
requirements on the users working with them, they may
overly constrain the necessary flexibility in action that is
needed to cope with uncertainties and surprises in the
organisation’s environment. Hence, the actors must, during
the process of integrated organisational redesign and system
implementation, find a reasonable balance in this field of
conflict between flexibility and rigidity.

In sum, taking these considerations together, the institution
of the UsersAward and the procedures around it appear as
an adequate approach to raise the consciousness for the
problems presented, to intensify communication between
suppliers and users and to improve the usability of systems.

REFERENCES

1. Brödner, P., 2002: Der Held von Caputh steht nicht
allein. Wie Wissenschaft die Nutzungsprobleme der
Informationstechnik ignoriert, in: Moldaschl, M. (Hg.):
Neue Arbeit – Neue Wissenschaft der Arbeit? Heidelberg:
Asanger 2002, 339-364

2. Brödner, P., 1997: Der überlistete Odysseus. Über das
zerrüttete Verhältnis von Menschen und Maschinen, Berlin:
edition sigma

3. Brynjolfsson, E. (1993): The Productivity Paradox of
Information Technology, CACM 36, No. 12, 67-77

4. Brynjolfsson, E.; Hitt, L.M., 2000: Beyond Computation:
Information Technology, Organizational Transformation
and Business Performance, Journal of Economic

Proceedings from UITQ 2005

 70

Perspectives 14 (4), 23-48

5. Davenport, T.H. (1998): Putting the Enterprise into the
Enterprise System, Harvard Business Review July-August,
121-131

6. Farrell, D. (2003): The Real New Economy, Harvard
Business Review October, 105-112

7. Floyd, C., 2002: Developing and Embedding
Autooperational Form, in: Dittrich, Y.; Floyd, C.;
Klischewski, R. (Eds.), 2002: Social Thinking – Software
Practice, Cambridge (MA): MIT Press, 5-28

8. Floyd, C., 1992: Software Development as Reality
Construction, in: Floyd, C.; Züllighoven, H.; Budde, R.;
Keil-Slawik, R. (Eds.): Software Development and Reality
Construction, Berlin Heidelberg New York: Springer, 86 –
100

9. Gibbs, W.W., 1994: Software: chronisch mangelhaft,
Spektrum der Wissenschaft, Dezember 1994, 56-63

10. Giddens, A., 1984: The Constitution of Society. Outline
of the Theory of Structuration, Cambridge: Polity Press

11. Kapor, M., 1996: A Software Design Manifesto, reprint
in Winograd, T. (ed.): Bringing Design to Software,
Reading (MA): Addison-Wesley

12. Landauer, T.K., 1995: The Trouble with Computers.
Usefulness, Usability, and Productivity, Cambridge (MA):
MIT Press

13. Maucher, I. (2001): Komplexitätsbewältigung durcph
Entwicklung und Gestaltung von Organisation, München:
Hampp

14. Maucher, I. (Hg.) (1998): Wandel der Leitbilder zur
Entwicklung und Nutzung von PPS-Systemen, München:
Hampp

15. McKinsey Global Institute (2001): Productivity in the
United States, http://www.mckinsey.com/knowledge/mgi/
reports/productivity.asp

16. Mead, G.H., 1903: Die Definition des Psychischen, in:
Gesammelte Aufsätze, hg. von Hans Joas, Bd. 1, Frankfurt /
M: Suhrkamp 1987, 83-148

17. Nake, F., 2001: Das algorithmische Zeichen, in:
Bauknecht, W.; Brauer, W.; Mück, T. (Hg.): Informatik
2001. Tagungsband der GI/OCG Jahrestagung, 736-742

18. Nake, F.; Grabowski, S., 2001: Human-Computer
Interaction Viewed as Pseudo-Communication, Knowledge-
Based Systems 14, 441-447

19. Nardi, B.A. (Ed.), 1996: Context and Consciousness:
Activity Theory and Human-Computer Interaction,
Cambridge (MA): MIT Press

20. Ogden, C.K.; Richards, I.A., 1989: The Meaning of
Meaning (reprint of 1923 edition), San Diego New York
London: HBJ

21. Orlikowski, W.J., 2000: Using Technology and
Constituting Structures: A Practice Lens for Studying
Technology in Organizations, Organization Science 11 (4),
404-428

22. Orlikowski, W.J.; Gash, D.C., 1994: Technological
Frames: Making Sense of Information Technology in
Organizations, ACM Transactions on Information Systems
12, 174-207.

23. Ortmann, G.; 1995: Formen der Produktion.
Organisation und Rekursivität, Opladen: Westdeutscher
Verlag

24. Oz, E., 1994: When Professional Standards are Lax.
The CONFIRM Failure and its Lessons, CACM 37, No.10,
29 - 36

25. Peirce, C.S., 1903: A Syllabus of Certain Topics of
Logic, Collected Papers, 1.180-202, 2.219-225 and other
paragrafs; German translation: Phänomen und Logik der
Zeichen, Frankfurt/M: Suhrkamp 1983

26. Pipek, V., 2005: From Tailoring to Appropriation
Support: Negotiating Groupware Usage, Acta Universitatis
Ouluensis A 430, Oulu: Oulu University Press

27. Royal Academy of Engineering (ed.), 2004: The
Challenges of Complex IT Projects. The report from a
working group of the Royal Academy of Engineering and
the British Computer Society, London: The Royal Academy
of Engineering

28. Scott, E.J.; Vessey, I., 2002: Managing Risks in
Enterprise Systems Implementations, CACM 45 April, 74-
81

29. Schon, D.A., 1983: The Reflective Practitioner: How
Professionals Think in Action, New York: Basic Books

30. Suchman, L., 1987: Plans and Situated Actions. The
Problem of Human Machine Communication, Cambridge
(MA): Cambridge University Press

31. Taxén, L.; Lilliesköld, J., 2005: Manifesting Shared
Affordances in System Development – the System
Anatomy, in: Ågerfalk, P.J.; Bannon, L.; Fitzgerald, B.
(Eds.): Proceedings of the 3rd International Workshop on
Action in Language, Organisations and Information
Systems (ALOIS 2005), Limerick (Ireland), March15–16

32. The Standish Group International, 2001: Extreme
CHAOS. The 2001 update to the CHAOS report,
http://www.standishgroup.com/sample_research/index.php

